
PROGRAMMING
MERIT BADGE POWERPOINT

© 2018 - 2020 ROBERT BAKER

WHAT IS PROGRAMMING

WHAT IS PROGRAMMING?

• Programming is the act of inserting instructions into a computer or machine to

be followed.

• There are many different career fields involving the programming of

computers; each utilizing different languages, techniques, and systems.

• We are only going to cover a few of the different aspects of programming

during this Merit Badge, but there are so many more.

SAFETY

• Normally programming normally involves computers, which use electricity. It is

important to make sure all power-cords are not frayed, and too keep liquids

far away to prevent electric shock.

• RSI – Repetitive Stress Injury

• Caused by typing for long periods of time and can cause pain in the wrists and hands

• How can RSI be prevented?

SAFETY

• Eye Strain can be caused by using computer screens for extended periods of

time.

• How can eye strain be prevented?

BEFORE COMPUTERS

Before the modern electrical computer, mechanical
devices used in factories were the first machines to
be programmed.

An example is the Joseph Jacquard Loom (1804)
which used hole-punched cards to “program”
patterns into fabric.

The picture on the left is the loom.
The picture on the right is a portrait of Jacquard was woven in
silk on a Jacquard loom and required 24,000 punched cards to
create (1839). One of these portraits in the possession of Charles
Babbage inspired him in using perforated cards in his Difference
Engine.

BEFORE COMPUTERS

Charles Babbage in 1823 started work on his

Difference Engine. It was programmed using

punch cards and could do simple calculations to

31 digits. Do to high costs, it was not built until

1991, well after his death. It weighed 15 tons

and was 8 ft tall.

It used human-power to turn the gears and

cranks and output the result using wheels with

digits painted on.

Fun Fact: The gear technology didn’t exist to build his machine, so Babbage

invented new ways of cutting gears. This incidentally advanced machinery

and factories during the end industrial revolution (1760-1840).

Ada Lovelace, the first programmer, theorized how to program Babbage's

Machines.

BEFORE COMPUTERS

In 1885, Herman Hollerith designed the “Electric

Tabulating System”, a machine designed to take on

the 1890’s Census. It was an early Scantron-like

machine using punch cards.

The 1880’s Census took 7 years to count, so due to

the growing population, the 1890’s and 1900’s

Censuses would have taken more than 10 years. This

would not be good.

With his machine, the 1890’s Census only took 6

weeks rather than 10 years. This proved computers

were a viable solution to many previously impossible

problems.

FIRST COMPUTERS
WHAT DID THE FIRST COMPUTERS LOOK LIKE?

FIRST COMPUTERS

A “Computer” used to be a job

description, not an electronic machine

Women almost exclusively filled

these positions.

Large agencies would have

“Computer Rooms” with many ladies

doing calculations by hand

A “kilogirl” was a unit of measurement equaling 1000 hours of computing

labor

EARLY COMPUTERS

ENIAC – Electronic Numerical Integrator And Computer
(1946)

• First general-purpose computer

• Used Base-10 instead of Binary (Base-2)

• They used Vacuum Tubes and Mechanical
Switches

• Used to calculate firing-tables for the military.

UNIVAC – UNIVersal Automatic Computer (1951)

• First commercial computer

• Brought computers into the public eye after it correctly
predicted the “total-upset, landslide”, 1952 Presidential
Election.

ENIAC 1946 – What do you notice about this photo

PRE-MODERN COMPUTERS

After Vacuum Tube and Mechanical

Switched computers, Integrated Circuits

(ICs) allowed computers to get much

smaller. Computers when from the Size

of buildings to the size of desks.

This also allowed more powerful

computers to be built because less space

was needed.
This is an Apple2 motherboard.

All the black chips make the CPU.

Each one is about 1” wide.

MODERN COMPUTERS

The Microprocessor allowed computers

to go from the size of desks to the size

of a dime!

Each small square in this picture is a

computer!

This allowed use to make computers

even more powerful and allow us to use

even more powerful language features.

Each “switch” in these chips are 10nm wide

HISTORY OF PROGRAMMING

• What was the first programming language?

• Binary / Machine Language (ML)

• Binary / ML is really hard to read, but it can

be done.

• Early computers used switches and cables to

accomplish this.

• It is insanely fast, only limited by hardware

speed.

• All programming languages end up as

Binary / ML at some point during execution.

HISTORY OF PROGRAMMING

• Next came Assembly Language (ASM)

• Slightly easier to read than Binary / ML

• Still very fast because it maps back to Binary /

ML

• Very few people ‘need’ to program is ASM

• There is a different Assembly Language for

each CPU design, so it is not portable code.

• Why is portable code good?

HISTORY OF PROGRAMMING

Next-Generation Languages came around the 1950’s.

They allowed:

• Code portability between different systems

• Easier to write, read and debug code

• Allowed for new concepts (i.e. functions, classes, objects, OOP)

• Explored new fields (i.e. science, math, computer science, data science, business)

The first big languages were… (in order of creation)

FORTRAN, LISP, COBOL, BASIC and Pascal

PROGRAMMING NOW

How many languages do you recognize?

C

C++

Java

JavaScript

HTML

CSS

Python

Ruby

PHP

OpenCL

SQL

MATLAB

Erlang

Ada

Objective-C

Swift

Mathematica

C#

Visual Basic

Rust

F#

R

Go

PowerShell

BASH

TypeScript

PostScript

CoffeeScript

Perl

x86-Assembly MASM

RegEx

PL/SQL

MIPS

ColdFusion

LaTeX

XML

JSON

Ladder Logic

YAML

Batch

PROGRAMMING NOW

Why are the languages grouped into colors?

C

C++

Java

JavaScript

HTML

CSS

Python

Ruby

PHP

OpenCL

SQL

MATLAB

Erlang

Ada

Objective-C

Swift

Mathematica

C#

Visual Basic

Rust

F#

R

Go

PowerShell

BASH

TypeScript

PostScript

CoffeeScript

Perl

x86-Assembly MASM

RegEx

PL/SQL

MIPS

ColdFusion

LaTeX

XML

JSON

Ladder Logic

YAML

Batch

C

C++

Java

JavaScript

HTML

CSS

Python

Ruby

PHP

OpenCL

SQL

MATLAB

Erlang

Ada

Objective-C

Swift

Mathematica

C#

Visual Basic

Rust

F#

R

Go

PowerShell

BASH

TypeScript

PostScript

CoffeeScript

Perl

x86-Assembly MASM

RegEx

PL/SQL

MIPS

ColdFusion

LaTeX

XML

JSON

Ladder Logic

YAML

Batch

C

C++

Java

JavaScript

HTML

CSS

Python

Ruby

PHP

OpenCL

SQL

MATLAB

Erlang

Ada

Objective-C

Swift

Mathematica

C#

Visual Basic

Rust

F#

R

Go

PowerShell

BASH

TypeScript

PostScript

CoffeeScript

Perl

x86-Assembly MASM

RegEx

PL/SQL

MIPS

ColdFusion

LaTeX

XML

JSON

Ladder Logic

YAML

Batch

The Green Languages are General Programing Languages

The Purple Languages are Scripting Languages

The Red Languages are Markup Languages

The Blue Languages are Declarative Languages

The Orange Languages are Assembly Languages

Different types of languages have different purposes.

It is important to match the type of work to the correct language to insure the best results.

PROGRAMMING LANGUAGES

Here are a few languages and the problems they try to tackle…

C++ – General Purpose, High Performance | ex. Game Engines, Desktop Apps (Adobe Photoshop, Chrome)

C – General Purpose, High Performance, Light Weight | ex. Linux OS, macOS, Integrated Circuits, Drivers

Java – General Purpose, Multiplatform | ex. Minecraft, Server Apps, Android Apps

C# – General Purpose, Windows Platform | ex. Unity Games, Server Apps, StackOverflow

Swift – General Purpose, iOS & macOS | ex. most apps for iPhones and macOS (replaced Objective-C)

SQL – Database Communication

JavaScript – General Web Scripting | ex. Interactive webpages, webpages that can run dynamic code

HTML – Webpage Design, Layout and Markup

CSS – Webpage Styling, Coloring, Fonts and Positioning

PHP – Web Server Code | ex. Backend Web Dev., Web Content Management Systems (i.e. WordPress)

TypeScript – Stricter Superset of JS that transpiles into JS |ex. Large JavaScript Apps

XML – Human and Machine readable file format for data sharing between apps

PROGRAMMING EXAMPLES

Hello World

C++

#include <iostream>

int main(int argc, char *argv[])

{

char myString[] = “Hello World!”;

std::cout << myString << std::endl;

return 0;

}

Java

class HelloWorld {

private String myString = "Hello World!";

public static void main(String args[]) {

System.out.println(myString);

}

}

Notice how different languages can look very different even when they are doing the same task.

Notice also how the bracing (i.e. “{}”) style is different between languages.

PROGRAMMING EXAMPLES

Hello World

C#

using System;

using System.Collections.Generic;

using System.Text;

namespace ConsoleApplication1

{

class HelloWorld

{

String myString = "Hello, world!";

static void Main(string[] args)

{

Console.WriteLine(myString);

}

}

}

X86 Assembly
.486

.model flat, stdcall

.stack 100h

option casemap :none

ExitProcess PROTO Near32 stdcall, dwExitCode:dword

putch PROTO Near32 stdcall, bChar:byte;

.data

strMyString byte "Hello World",0

.code

main PROC

mov ecx, LENGTHOF strMyString

mov esi, OFFSET strMyString

L1:

invoke putch, byte PTR esi

inc esi

loop L1

invoke ExitProcess,0

main ENDP

END main

PROGRAMMING EXAMPLES

Hello World

JavaScript

myString = "Hello World!";

console.log(myString);

Python

myString = 'Hello World!'

print(myString)

Notice how different languages can look very different even when they are doing the same task.

PROGRAMMING LANGUAGE TYPES

Languages can be split into a three different levels..

• High-Level (ex. Python, Ruby, JavaScript, Java, SQL)

• C-Level (ex. C, C++, Rust)

• Low-Level (x86 Assembly, Machine Language)

PROGRAMMING LANGUAGE TYPES

Why would you use a High-Level, Low-Level or C-Level language?

• Low Level

• Pros: Fast Execution, No Overhead, Single Platform, Compiled

• Cons: Hard to read, write, debug, and maintain

• Examples: ML, MASM, TASM, NASM, MIPS

• High-Level

• Pros: Easier to read, write, debug, and maintain, Multi-

Platform, Compiled or Interpreted

• Cons: Slower than Low-Level, not as much control over

hardware

• Examples: Python, Ladder-Logic, JavaScript, Java, SQL

• C-Level

• Best of both worlds, Compiled

• Good control over hardware with ease of writing.

• Examples: C, C++, Rust, FORTRAN, PASCAL

Note: Java, Python, etc. are one level higher than FORTAN, C and PASCAL

PROGRAMMING LANGUAGE TYPES

This photo illiterates the difference between

compiled and interpreted languages…

Use your computers to make a list of 3

compiled languages and 3 interpreted

languages.

Where would you use a compiled languages

vs an interpreted language?

Done once

Done every time

Done every time

PROGRAMMED DEVICES

Our lives are filled with so many programmed devices, you many not even notice…

What are somethings around your house that are programmed?

• Smart TVs, Smart Door Bells

• Xbox, PlayStation, Wii, Ms. Pacman

• Microwave, Wi-Fi Router (these two are the same thing)

• Etc..

What language do you think these were programmed in?

INTELLECTUAL PROPERTY (IP)

What are the four types of IP?

1. Copyright

2. Patent

3. Trademark

4. Trade Secret

Open your computers and go online.

Get the definitions of all four of these

types of IP.

INTELLECTUAL PROPERTY (IP)

What is …

1. Copyright – protects a particular expression of an idea that the author created (i.e.

PowerPoints, Game Art, Specific Code)

2. Patent – protects useful innovative processes or methods, machines, manufactured items, or

“compositions of matter” (i.e. a new and revolutionary math algorithm used in an app)

3. Trademark – protects a word, phrase, symbol or sound that identifies and distinguishes the

source of a particular product or service (i.e. Windows Logo, “Your mattress is freeee”, etc.)

4. Trade Secret – protects valuable information be not disclosing it to anyone, enforced by a

contract called a NDA (i.e. what info Facebook collects)

OWNING VS LICENSING

Do I own a copy of PowerPoint?

Do I own a copy of Google Chrome?

Do I own a copy of an App I built?

What is the difference between owning and licensing?

• Owning means you can do what ever you want to the software. Most people do not

own software.

• Licensing is where you “buy or get permission” to use the software, often subscription

based.

LICENSE TYPES EXPLAINED

Use your computers to research the following key terms…

• Open-Source –

• Closed-Source –

• Freeware –

• Shareware –

• Demo –

• Public Domain –

LICENSE TYPES EXPLAINED

Use your computers to research the following key terms…

• Open-Source – the code is exposed to the public and can be modified or distributed, may be limits or

restrictions (doesn’t mean free).

• Closed-Source – the code is NOT exposed to the public and cannot be edited or distributed (doesn’t mean

free).

• Freeware – 100% free to use, not necessarily free to be modified or distributed.

• Shareware – free to download and use, but asked for donations (i.e. Ad-Block). Not free to modify or

distribute.

• Demo – A free trial version of the program, may not have all the features enabled. Not free to modify or

distribute.

• Pubic Domain – There is absolutely no ownership such as copyright, trademark, or patent. Software in the

public domain can be modified, distributed, or sold even without any attribution by anyone.

CAREERS IN PROGRAMMING

• Computer Scientist

• Mobile App Developer

(dev)

• Desktop App Dev

• UI / UX Engineer

• Software Engineer

• Game Engine Dev

• Gameplay Dev

• Database Engineer

• Hardware Engineer

• Computer Engineer

• Sysadmin

• Hacker / Pen-Tester

• Web Dev (frontend and

backend)

What are some careers you have heard of in a programming field?

REVIEW / LUNCH / PROJECT TIME

Room Number Language Rotation 1 Rotation 2 Rotation 3

SM346 C++ Group 1 Group 2 Group 3

SM348 C# Group 3 Group 1 Group 2

SM202 HTML/CSS Group 2 Group 3 Group 1

SM346 and SM348 are on this floor

SM202 is one floor down

Before lunch, your knowledge will be reviewed by pairs of Merit Badge Councilors and TA’s.

Let’s head outside and make lines of 8-10 Scouts per line. Bring everything with you.

Once you have been reviewed successfully, you may eat lunch.

There will be some booths you can visit during lunch to learn about different CS Clubs in college.

	Programming
	What is Programming
	What is programming?
	Safety
	Safety
	Before Computers
	Before Computers
	Before Computers
	First Computers
	First Computers
	Early Computers
	Pre-Modern Computers
	Modern Computers
	History of Programming
	History of Programming
	History of Programming
	Programming Now
	Programming Now
	Slide 19
	Slide 20
	Programming Languages
	Programming Examples
	Programming Examples
	Programming Examples
	Programming Language Types
	Programming Language Types
	Programming Language Types
	Programmed Devices
	intellectual property (IP)
	intellectual property (IP)
	Owning vs Licensing
	License Types Explained
	License Types Explained
	Careers in Programming
	Review / Lunch / Project Time

